A computational model for individual scholars' writing style dynamics
DOI:
https://doi.org/10.17239/Keywords:
Academic writing style, Scientific communication, Computational linguistics, Individual writing styleAbstract
A manuscript’s writing style is central to determining its readership, influence, and impact. Past research has shown that, in many cases, scholars present a unique writing style that is manifested in their manuscripts. In this work, we report a comprehensive investigation into how scholars’ writing styles evolve throughout their careers focusing on their academic relations with their advisors and peers. Our results show that scholars’ writing styles tend to stabilize early on in their careers – roughly around their 13th publication. Around the same time, schol- ars’ departures from their advisors’ writing styles seem to converge as well. Last, collaborations involving fewer scholars, scholars from the same gender, or from the same field of study seem to bring about a great change in their co-authors’ writing styles with younger scholars being especially influenceable. The proposed method can help to investigate the dynamic behavior of academic writing style.
References
Abdel Latif, M. M. (2008). A state-of-the-art review of the real-time computer-aided study of the writing process. International Journal of English Studies, 8(1á), 29–50.
Abramo, G., D’Angelo, C., & Di Costa, F. (2019). A gender analysis of top scientists’ collaboration behavior: evidence from italy. Scientometrics, 120, 405–418. https://doi.org/10.1007/s11192-019-03136-6
Acheampong, F. A., Nunoo-Mensah, H., & Chen, W. (2021). Transformer models for text-based emotion detection: a review of bert-based approaches. Artif Intell Rev, 54, 5789–5829
https://doi.org/10.1007/s10462-021-09958-2
Aggrawal, N., & Arora, A. (2016). Visualization, analysis and structural pattern infusion of dblp co-authorship network using gephi. In 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), (pp. 494–500). https://doi.org/10.1109/ngct.2016.7877466
Akiva, N., & Koppel, M. (2012). Identifying distinct components of a multi-author document. In 2012 European Intelligence and Security Informatics Conference, (pp. 205–209). https://doi.org/10.1109/eisic.2012.16
Allen, L. K., Snow, E. L., & McNamara, D. S. (2016). The narrative waltz: The role of flexibility in writing proficiency. Journal of Educational Psychology, 108(7á), 911–924.
https://doi.org/10.1037/edu0000109
Alluqmani, A., & Shamir, L. (2018). Writing styles in different scientific disci- plines: a data science approach. Scientometrics, 115(2á), 1071–1085. https://doi.org/10.1007/s11192-018-2688-8
Amjad, T., Ding, Y., Xu, J., Zhang, C., Daud, A., Tang, J., & Song, M. (2017). Standing on the shoulders of giants. Journal of Informetrics, 11(1á), 307–323.
https://doi.org/10.1016/j.joi.2017.01.004
Argamon, S., Dodick, J., & Chase, P. (2008). Language use reflects scientific methodol- ogy: A corpus-based study of peer-reviewed journal articles. Scientometrics, 75(2á), 203–238. https://doi.org/10.1007/s11192-022-04576-3
Aviv-Reuven, S., & Rosenfeld, A. (2023a). A logical set theory approach to journal subject classification analysis: intra-system irregularities and inter-system discrepancies in web of science and scopus. Scientometrics, 128, 157–175. https://doi.org/10.1007/s11192-022-04576-3
Aviv-Reuven, S., & Rosenfeld, A. (2023b). A logical set theory approach to journal subject classification analysis: intra-system irregularities and inter-system discrepancies in web of science and scopus. Scientometrics, 128(1á), 157–175. https://doi.org/10.1007/s11192-022-04576-3
Baker, K. M. (2016). Peer review as a strategy for improving students’ writing process. Active Learning in Higher Education, 17(3á), 179–192. https://doi.org/10.1177/1469787416654794
Bevendorff, J., Chulvi, B., De La Pen˜a Sarrace´n, G. L., Kestemont, M., Manjavacas, E., Markov, I., Mayerl, M., Potthast, M., Rangel, F., Rosso, P., Stamatatos, E., Stein, B., Wiegmann, M., Wolska, M., & Zangerle, E. (2021). Overview of pan 2021: Authorship verification, profiling hate speech spreaders on twitter, & style change detection. In Candan, K. S., Ionescu, B., Goeuriot, L., Larsen, B., Mu¨ller, H., Joly, A., Maistro, M., Piroi, F., Faggioli, G., & Ferro, N., editors, Experimental IR Meets Multilinguality, Multimodality, and Interaction, (pp. 419–431). Springer International Publishing. https://doi.org/10.1007/978-3-030-85251-1_26
Bozeman, B., & Corley, E. (2004). Scientists’ collaboration strategies: implica- tions for scientific and technical human capital. Research policy, 33(4á), 599–616.
https://doi.org/10.1016/j.respol.2004.01.008
Can, F., & Patton, J. M. (2004). Change of writing style with time. Computers and the Humanities, 38, 61–82. https://doi.org/10.1023/b:chum.0000009225.28847.77
Chandler, D. (1992). The phenomenology of writing by hand. Intelligent Tutoring Media, 3(2–3á), 65–74. https://doi.org/10.1080/14626269209408310
Chatzea, V.-E., Mechili, E. A., Melidoniotis, E., Petrougaki, E., Nikiforidis, G., Argyriadis, A., & Sifaki-Pistolla, D. (2024). Recommendations for young researchers on how to better advance their scientific career: A systematic review. Population Medicine, 4. https://doi.org/10.18332/
popmed/152571
Correa Jr., E. A., Silva, F. N., da F. Costa, L., & Amancio, D. R. (2017). Patterns of authors contribution in scientific manuscripts. Journal of Informetrics, 11(2á), 498–510. https://doi.org/10.1016/j.joi.2017.03.003
Crossley, S. A., Roscoe, R., & McNamara, D. S. (2014). What is successful writing? an investigation into the multiple ways writers can write successful essays. Written Communication, 31, 184–214. https://doi.org/10.1177/0741088314526354
Diego, M. A., Field, T. M., & Sanders, C. E. (2003). Academic performance, popularity, and depression predict adolescent substance use. Adolescence, 38, 149.
Dodick, J., Argamon, S., & Chase, P. (2009). Understanding scientific methodology in the historical and experimental sciences via language analysis. Science & Education, 18, 985–1004. https://doi.org/10.1007/s11191-008-9146-6
Dong, G., Liao, G., Liu, H., & Kuang, G. (2018). A review of the autoencoder and its vari- ants: A comparative perspective from target recognition in synthetic-aperture radar images. IEEE Geoscience and Remote Sensing Magazine, 6(3á), 44–68.
https://doi.org/10.1109/mgrs.2018.2853555
dos Santos, C. N., Melnyk, I., & Padhi, I. (2018). Fighting offensive language on social media with unsupervised text style transfer. arXiv. https://doi.org/10.18653/v1/p18-2031
Duszak, A. (1994). Academic discourse and intellectual styles. Journal of Pragmatics, 21(3á), 291–313. https://doi.org/10.1016/0378-2166(94)90003-5
Fuller, A., & Unwin, L. (2009). Change and continuity in apprenticeship: the re- silience of a model of learning. Journal of Education and Work, 22(5á), 405–416.
https://doi.org/10.1080/13639080903454043
Graves, A. (2012). Sequence Transduction with Recurrent Neural Networks. arXiv.
Gray, B. E. (2011). Exploring academic writing through corpus linguistics: When discipline tells only part of the story. PhD thesis, Northern Arizona University.
Gridach, M. (2020). A framework based on (probabilistic) soft logic and neural network for NLP. Applied Soft Computing, 93:106232.
Gulati, A., & Eirinaki, M. (2018). Influence propagation for social graph-based recommendations. In 2018 IEEE International Conference on Big Data (Big Data), (pp. 2180–2189). https://doi.org/10.1109/bigdata.2018.8622213
Hartley, J., & Branthwaite, A. (1989). The psychologist as wordsmith: A ques- tionnaire study of the writing strategies of productive british psychologists. Higher Education, 18, 423–452. https://doi.org/10.1007/bf00140748
Hartley, J., & Cabanac, G. (2015). An academic odyssey: Writing over time. Scientometrics, 103, 1073–1082. https://doi.org/10.1007/s11192-015-1562-1
Hartley, J., Howe, M., & McKeachie, W. (2001). Writing through time: longitudinal studies of the effects of new technology on writing. British Journal of Educational Technology, 32(2á), 141–151. https://doi.org/10.1111/1467-8535.00185
Hartley, J., Pennebaker, J. W., & Fox, C. (2003a). Abstracts, introductions and discus- sions: How far do they differ in style? Scientometrics, 57, 389–398.
Hartley, J., Pennebaker, J. W., & Fox, C. (2003b). Using new technology to assess the academic writing styles of male and female pairs and individuals. Journal of Technical Writing and Communi cation, 33(3á), 243–261. https://doi.org/10.2190/9vpn-rrx9-g0uf-cj5x
Haverals, W., Geybels, L., & Joosen, V. (2022). A style for every age: A stylometric inquiry into crosswriters for children, adolescents, and adults. Language and Literature, 31(1á), 62–84. https://doi.org/10.1177/09639470211072163
Hendriks, B., Van Meurs, F., Korzilius, H., le Pair, R.,, & le Blanc-Damen, S. (2012). Style congruency and persuasion: A cross-cultural study into the influence of differences in style dimensions on the persuasiveness of business newsletters in great britain and the netherlands. IEEE Transactions on Pro- fessional Communication, 55(2á), 122–141.
https://doi.org/10.1109/tpc.2012.2194602
Holcombe, A. O. (2019). Contributorship, not authorship: Use credit to indicate who did what. Publications, 7(3). https://doi.org/10.3390/publications7030048
Hu, Y., Hu, C., Tran, T., Kasturi, T., Joseph, E., & Gillingham, M. (2021). What’s in a name? – gender classification of names with character based machine learning models. Data Mining and Knowledge Discovery, 4. https://doi.org/10.1007/s10618-021-00748-6
Huertas-Tato, J., Huertas-Garcia, A., Martin, A., & Camacho, D. (2022a). Part: Pre-trained authorship representation transformer. arXiv.
Huertas-Tato, J., Martin, A., Huertas-Garcia, A., & Camacho, D. (2022b). Gener- ating authorship embeddings with transformers. In 2022 International Joint Conference on Neural Networks (IJCNN), (pp. 1–8). https://doi.org/10.1109/ijcnn55064.2022.9892173
Huertas-Tato, K., Mart´ın, A., & Camacho, D. (2024). Understanding writing style in social media with a supervised contrastively pre-trained transformer. Knowledge-Based Systems, 296, 111867. https://doi.org/10.1016/j.knosys.2024.111867
Jhamtani, H., Gangal, V., Hovy, E., & Nyberg, E. (2017). Shakespearizing modern language using copy-enriched sequence to sequence models. In Proceedings of the Workshop on Stylistic Variation, (pp. 10–19). https://doi.org/10.18653/v1/w17-4902
Knight, S., Shibani, A., Abel, S., Gibson, A., Ryan, P., Sutton, N., Wight, R., Lucas, C., Sandor, A., Kitto, K., Liu, M., Vijay Mogarkar, R., & Buckingham Shum, S. (2020). Acawriter: A learning analytics tool for formative feedback on academic writing. Journal of Writing Research, 12(1), 141–186. https://doi.org/10.17239/jowr-2020.12.01.06
Koppel, M., & Winter, Y. (2013). Authorship attribution: What’s easy and what’s hard? Journal of Law and Policy, 21(2á), 317–331.
Koppel, M., & Winter, Y. (2014). Determining if two documents are written by the same author. Journal of the Association for Information Science and Technology, 65(1á), 178–187.
Kosnik, L.-R. (2023). Additional evidence on gender and language in academic economics re- search. Scientometrics, (pp. 1–20).
Kosnik, L.-R., & Hamermesh, D. S. (2023). Aging in style: Seniority and sentiment in scholarly writing. Technical report, National Bureau of Economic Research.
https://doi.org/10.3386/w31150
Lample, G., Subramanian, S., Smith, E., Denoyer, L., Ranzato, M., & Boureau, Y. (2019). Multiple-attribute text rewriting. In International Conference on Learning Representations.
Lavelle, E. (1997). Writing style and the narrative essay. British Journal of Educational Psychology, 67, 475–482. https://doi.org/10.1111/j.2044-8279.1997.tb01259.x
Lazebnik, T. (2023). Computational applications of extended sir models: A review focused on airborne pandemics. Ecological Modelling, 483, 110422.
https://doi.org/10.1016/j.ecolmodel.2023.110422
Lazebnik, T., Beck, S., & Shami, L. (2023). Academic co-authorship is a risky game.Scientometrics, 128, 6495–6507. https://doi.org/10.1007/s11192-023-04843-x
Lazebnik, T., Bunimovich-Mendrazitsky, S., Ashkenazi, S., Levner, E., & Benis, A. (2022). Early detection and control of the next epidemic wave using health communications: Development of an artificial intelligence-based tool and its validation on covid-19 data from the us. International Journal of Environmental Research and Public Health, 19(23).
https://doi.org/10.3390/ijerph192316023
Lazebnik, T., & Rosenfeld, A. (2024). Detecting llm-assisted writing in scientific communication: Are we there yet? Journal of Data and Information Science. https://doi.org/10.2478/jdis-2024-0020
Lazebnik, T., & Somech, A. (2022). Demonstrating substrat: A subset-based strategy for faster automl on large datasets. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, (pp. 4907–4911). Association for Computing Machinery. https://doi.org/10.1145/3511808.3557160
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521:436–444. [Leman et al., 2011] Leman, P. J., Macedo, A. P., Bluschke, A., Hudson, L., Rawling, C., & Wright, H. (2011).The influence of gender and ethnicity on children’s peer collaborations. British Journal of Developmental Psychology, 29(1á), 131–137. https://doi.org/10.1348/026151010x526344
Lerchenmueller, M. J., Sorenson, O., & Jena, A. B. (2019). Gender differences in how scientists present the importance of their research: observational study. bmj, 367.
https://doi.org/10.1136/bmj.l6573
Li, X., Zhou, Y., Dvornek, N. C., Gu, Y., Ventola, P., & Duncan, J. S. (2020). Efficient shapley explanation for features importance estimation under uncertainty. In Martel, A. L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M. A., Zhou, S. K., Racoceanu, D., & Joskowicz, L., editors, Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, (pp. 792–801). https://doi.org/10.1007/978-3-030-59710-8_77
Li, Z. (2022). Is academic writing less passivized? corpus-based evidence from research article ab- stracts in applied linguistics over the past three decades (1990–2019). Scientometrics, 127(10á), 5773–5792. https://doi.org/10.1007/s11192-022-04498-0
Livesey, F. (1981). The market for academic manuscripts. European Journal of Marketing, 15(7á), 52–67.
Lonka, K., Chow, A., Keskinen, J., Hakkarainen, K., Sandstrom, N., & Pyhalto, K. (2014). How to measure phd students’ conceptions of academic writing – and are they related to well-being? Journal of Writing Research, 5(3á), 245–269. https://doi.org/10.17239/jowr-2014.05.03.1
Lu, C., Bu, Y.and Wang, J., Ding, Y., Torvik, V., Schnaars, M., & Zhang, C. (2019). Examining scientific writing styles from the perspective of linguistic complexity. Journal of the Association for Information Science and Technology, 70(5á), 462–475.
Matsuda, P. K., & Tardy, C. M. (2007). Voice in academic writing: The rhetorical construction of author identity in blind manuscript review. English for Specific Purposes, 26(2á), 235–249.
McNamara, D. S., Crossley, S. A., , & McCarthy, P. M. (2010). The linguistic features of writing quality. Written Communication, 27, 57–86. https://doi.org/10.1177/0741088309351547
Negretti, R., Sjoberg-Hawke, C., Persson, M., & Cervin-Ellqvist, M. (2023). Thinking outside the box: Senior scientists’ metacognitive strategy knowledge and self-regulation of writing for science communication. Journal of Writing Research, 15(2). https://doi.org/10.17239/jowr-2023.15.02.04
Nettleton, D. F. (2013). Data mining of social networks represented as graphs. Computer Science Review, 7, 1–34. https://doi.org/10.1016/j.cosrev.2012.12.001
Niennattrakul, V., & Ratanamahatana, C. A. (2007). On clustering multimedia time series data using k-means and dynamic time warping. In 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE’07), (pp. 733–738). https://doi.org/10.1109/mue.2007.165
Nunkoo, R., Thelwall, M., Ladsawut, J., & Goolaup, S. (2020). Three decades of tourism scholarship: Gender, collaboration and research methods. Tourism Management, 78, 104056. https://doi.org/10.1016/j.tourman.2019.104056
Olson, R. S., & Moore, J. H. (2016). Tpot: A tree-based pipeline optimization tool for automating machine learning. In Workshop on automatic machine learning, (pp. 66–74). PMLR. https://doi.org/10.1007/978-3-030-05318-5_8
Otter, D. W., Medina, J. R., & Kalita, J. K. (2021a). A survey of the usages of deep learning for natural language processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2á), 604–624. https://doi.org/10.1109/tnnls.2020.2979670
Otter, D. W., Medina, J. R., & Kalita, J. K. (2021b). A survey of the usages of deep learning for natural language processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2á), https://doi.org/10.1109/tnnls.2020.2979670604–624.
Pham, T.-A. N., Li, X., Cong, G., & Zhang, Z. (2015). A general graph-based model for recommendation in event-based social networks. In 2015 IEEE 31st International Conference on Data Engineering (pp. 567–578). https://doi.org/10.1109/icde.2015.7113315
Polignano, M., de Gemmis, M., & Semeraro, G. (2020). Contextualized bert sentence embeddings for author profiling: The cost of performances. In Computational Science and Its Applications – ICCSA 2020, volume 12252 of Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/978-3-030-58811-3_10
Potter, L., & Palmer, X. L. (2023). Post-llm academic writing considerations. In Arai, K., editor, Proceedings of the Future Technologies Conference (FTC) 2023, Volume 4. FTC 2023. Lecture Notes in Networks and Systems, volume 816. https://doi.org/10.1007/978-3-031-47448-4_12
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140á), 1–67.
Raina, R., Madhavan, A., & Ng, A. Y. (2009). Large-scale deep unsupervised learning using graphics processors. In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 873–880). Association for Computing Machinery.
https://doi.org/10.1145/1553374.1553486
Rao, S., Li, Y., Ramakrishnan, R., Hassaine, A., Canoy, D., Cleland, J., Lukasiewicz, T., Salimi- Khorshidi, G., & Rahimi, K. (2022). An explainable transformer-based deep learning model for the prediction of incident heart failure. IEEE Journal of Biomedical and Health Informatics, 26(7), 3362–3372. https://doi.org/10.1093/ehjci/ehaa946.3553
Rileya, P., Constantb, N., Guob, M., Kumarc, G., Uthusb, D., & Parekhb, Z. (2021). Textsettr: Few-shot text style extraction and tunable targeted restyling. arXiv.
Rosenfeld, A. (2023). Is DBLP a good computer science journals database? Computer, 56(3á), 101–108. https://doi.org/10.1109/mc.2022.3181977
Rosenfeld, A., & Maksimov, O. (2022). Should young computer scientists stop collaborating with their doctoral advisors? Commun. ACM, 65(10á), 66–72. https://doi.org/10.1145/3529089
Rosenfled, A., & Lazebnik, T. (2024). Whose llm is it anyway? Linguistic comparison and llm attribution for gpt-3.5, gpt-4 and bard. arXiv.
Rosenthal, S., & McKeown, K. (2011). Age prediction in blogs: A study of style, content, & online behavior in pre- and post-social media generations. The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference, (pp. 19–24).
Rubin, D. L. and Greene, K. (1992). Gender-typical style in written language. Research in the Teaching of English, 26(1á), 7–40. https://doi.org/10.58680/rte199215447
Savchenko, E. and Lazebnik, T. (2022). Computer aided functional style iden- tification and correction in modern Russian texts. Journal of Data, Information and Management, 4:25–32. https://doi.org/10.1007/s42488-021-00062-2
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003
Shah, U. U., Mushtaq, R., Bhat, S. A., & Gul, S. (2023). Does publication history influence the integrity of the journals: studying publication timelines and their impact on journal metrics? Online Information Review, 47(4á), 765–781. https://doi.org/10.1108/oir-02-2022-0108
Shi, Y., Dong, Y., Tan, Q., Li, J., & Liu, N. (2023). Gigamae: Generalizable graph masked autoencoder via collaborative latent space reconstruction. In Proceedings of the 32nd ACM International Con- ference on Information and Knowledge Management, (pp. 2259–2269). https://doi.org/10.1145/3583780.3614894
Shiyab, S., & Lynch, M. S. (2006). Can literary style be translated? Babel, 52(3á), 262– 275. https://doi.org/10.1075/babel.52.3.04shi
Singh, R., Weerasinghe, J., & Greenstadt, R. (2021). Writing style change detection on multi-author documents. In CLEF 2021– Conference and Labs of the Evaluation Forum.
Snow, E. L., Allen, L. K., Jacovina, M. E., Perret, C. A., & McNamara, D. S. (2015). You’ve got style: Detecting writing flexibility across time. In Proceedings of the Fifth International Conference on Learning Analytics And Knowledge, (pp. 194–202). Association for Computing Machinery. https://doi.org/10.1145/2723576.2723592
Song, N., Chen, K., & Zhao, Y. (2023). Understanding writing styles of scientific papers in the is-ls domain: Evidence from abstracts over the past three decades. Journal of Informetrics, 17(1á), 101377. https://doi.org/10.1016/j.joi.2023.101377
Staiano, J., Lepri, B., Aharony, N., Pianesi, F., Sebe, N., & Pentland, A. (2012). Friends don’t lie: inferring personality traits from social network structure. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, (pp. 321–330).
https://doi.org/10.1145/2370216.2370266
Sun, K., Liu, H., & Xiong, W. (2021). The evolutionary pattern of language in scientific writ- ings: A case study of philosophical transactions of royal society (1665–1869). Scientometrics, 126, 1695–1724. https://doi.org/10.1007/s11192-020-03816-8
Sun, Y., & Giles, C. L. (2007). Popularity weighted ranking for academic digital libraries. In Amati, G., Carpineto, C., & Romano, G., editors, Advances in Information Retrieval, (pp. 605–612). https://doi.org/10.1007/978-3-540-71496-5_57
Suresh, V., Raghupathy, N., Shekar, B., & Madhavan, C. E. V. (2007). Discovering men- torship information from author collaboration networks. In Corruble, V., Takeda, M., & Suzuki, E., editors, Discovery Science, (pp. 197–208). https://doi.org/10.1007/978-3-540-75488-6_19
Tabassum, S., Pereira, F. S. F., Fernandes, S., & Gama, J. (2018). Social network analysis: An overview. WIREs Data Mining and Knowledge Discovery, 8(5á), e1256.
Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R., Russwurm, M., Kolar, K., & Woods, E. (2020). Tslearn, a machine learning toolkit for time series data. J. Mach. Learn. Res., 21(1á), 118.
Terreau, E., Gourru, A., & Velcin, J. (2021). Writing style author embedding evaluation. In Gao, Y., Eger, S., Zhao, W., Lertvittayakumjorn, P., & Fomicheva, M., editors, Proceedings of the 2nd Workshop on Evaluation and Comparison of NLP Systems, (pp. 84–93).
https://doi.org/10.18653/v1/2021.eval4nlp-1.9
Thirunavukarasu, A. J., Ting, D. S. J., Elangovan, K., Gutierrez, L., Tan, T. F., & Ting, D. S. W. (2023). Large language models in medicine. Nature Medicine, 29, 1930–1940.
https://doi.org/10.1038/s41591-023-02448-8
Torrance, M., Thomas, G., & Robinson, E. (1994). The writing strategies of graduate research students in the social sciences. Higher Education, 27, 379–392.
https://doi.org/10.1007/bf03179901
Torrance, M., Thomas, G. V., & Robinson, E. J. (1999). Individual differences in the writing behaviour of undergraduate students. British Journal of Educational Psychology, 69:189–199.
https://doi.org/10.1348/000709999157662
Torrance, M., Thomas, G. V., & Robinson, E. J. (2000). Individual differences in under- graduate essay-writing strategies: A longitudinal study. Higher Education, 39, 181–200.
Van den Besselaar, P., & Mom, C. (2022). The effect of writing style on success in grant applications. Journal of Informetrics, 16(1á), 101257. https://doi.org/10.1016/j.joi.2022.101257
Van der Loo, J., Krahmer, E., & van Amelsvoort, M. (2018). Learning how to write an academic text: The effect of instructional method and writing preference on academic writing performance. Journal of Writing Research, 9(3á), 233–258. https://doi.org/10.17239/jowr-2018.09.03.01
Van Waes, L., & Schellens, P. J. (2003). Writing profiles: The effect of the writing mode on pausing and revision patterns of experienced writers. Journal of Pragmatics, 35(6á), 829–853. https://doi.org/10.1016/s0378-2166(02)00121-2
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., & Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.
Vysotska, V., Burov, Y., Lytvyn, V., & Demchuk, A. (2018). Defining author’s style for plagiarism detection in academic environment. In 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), (pp. 128–133).
https://doi.org/10.1109/dsmp.2018.8478574
Waaijer, C. J. F., Teelken, C., Wouters, P. F., & van der Weijden, I. C. M. (2017). Competition in science: Links between publication pressure, grant pressure and the academic job market. Higher Education Policy, 31, 225–243. https://doi.org/10.1057/s41307-017-0051-y
Wheeler, M. A., Vylomova, E., McGrath, M. J., & Haslam, N. (2021). More confident, less formal: stylistic changes in academic psychology writing from 1970 to 2016. Scientometrics, 126, 9603– 9612. https://doi.org/10.1007/s11192-021-04166-9
Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q.-L., & Tang, Y. (2023). A brief overview of Chatgpt: The history, status quo and potential future development. IEEE/CAA Journal of Automatica Sinica, 10(5á), 1122–1136. https://doi.org/10.1109/jas.2023.123618
Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827á), 1036–1039. https://doi.org/10.1126/science.1136099
Xiao, L., & Askin, N. (2012). Wikipedia for academic publishing: advantages and challenges. Online Information Review, 36(3á), 359–373. https://doi.org/10.1108/14684521211241396
Xin, R., & Lim, Y. (2023). Bibliometric analysis of literature on social media trends during the covid-19 pandemic. Online Information Review.
Xu, P., Cheung, J. C. K., & Cao, Y. (2020). On variational learning of controllable representa- tions for text without supervision. In Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, (pp. 10534–10543).
https://doi.org/10.1108/oir-05-2023-0194
Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, Z., & Zhang, Y. (2024). A survey on large language model (llm) security and privacy: The good, the bad, and the ugly. High-Confidence Computing, 4(2á), 100211. https://doi.org/10.1016/j.hcc.2024.100211
Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Computation, 31(7á), 1235–1270.
https://doi.org/10.1162/neco_a_01199
Zhang, C., Bu, Y., Ding, Y., & Xu, J. (2018). Understanding scientific collaboration: Homophily, transitivity, & preferential attachment. Journal of the Association for Information Science and Technology, 69(1á), 72–86. https://doi.org/10.1002/asi.23916
Zhao, Y., Zhang, J., & Zong, C. (2023). Transformer: A general framework from machine translation to others. Machine Intelligence Research, 20(4á), 514–538. https://doi.org/10.1007/s11633-022-1393-5
Zheng, R., Li, J., Chen, H., & Huang, Z. (2006). A framework for authorship identification of online messages: Writing-style features and classification techniques. Journal of the American Society for Information Science and Technology, 57(3á), 378–393. https://doi.org/10.1002/asi.20316
Published
Issue
Section
License
Copyright (c) 2024 Teddy Lazebnik, Ariel Rosenfeld
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.